July 2007 - DBI 1.58

Advanced Perl DBI

Making data work for you

by Tim Bunce

Advanced DBI tutorial
© Tim Bunce
July 2007

Topical Topics

Speed Speed Speed!

Handling handles and binding values
Error checking and error handling
Transactions

Architecture and Tracing

DBI for the web

Bulk operations

Tainting

Handling LONG/BLOB data
Portability

Gofer Proxy power and flexible multiplex
What's planned

Advanced DBI tutorial
© Tim Bunce
July 2007

Trimmed Topics and Tips

® | ack of time prevents the inclusion of ...

m Details of issues relating to specific databases and drivers

— (other than where used as examples of general issues)
— each driver would warrant a tutorial of its own!

®m Non-trivial worked examples
m Handy DBIx: :* and other DBI related modules

®m .. and anything I'd not finished implementing when this was written ...

® But | hope you'll agree that there’s ample information
® in the following ~110 slides...

® Tips for those attending the conference tutorial:

®m Doodle notes from my whitterings about the ‘whys and wherefores’ on your
printed copy of the slides as we go along...

The DBI - What’s it all about?

® The Perl DBI defines and implements an interface to databases

Plug-in driver modules do the database-specific work
DBI provides default methods, functions, tools etc for drivers
Not limited to the lowest common denominator

Very mature. Continuous development after first release in 12th Oct 1994.

® The Perl DBI has built-in...

Automatic error checking
Detailed call tracing/debugging
Flexible call profiling/benchmarking

® Designed and built for speed

Advanced DBI tutorial
© Tim Bunce
July 2007

A picture is worth?

Perl Application
DBl Module
DBD::Oracle DBD::Informix DBD::Other
Oracle Server Informix Server Other Server

Advanced DBI tutorial
© Tim Bunce
July 2007

Speed Speed Speed !

What helps,what doesn't,
and how to measure it

Give me speed!

DBI was designed for speed from day one

DBI method dispatcher written in hand-crafted XS/C
Dispatch to XS driver method calls is specially optimized
Cached attributes returned directly by DBI dispatcher
DBI overhead is generally insignificant

— So we'll talk about other speed issues instead ...

Advanced DBI tutorial
© Tim Bunce
July 2007

What do you mean by Speed?

Which can transfer data between Europe and USA the fastest?:

A: Gigabit network connection.
B: Airplane carrying data tapes.

Answer:
It depends on the volume of data.

Throughput / Bandwidth

® Throughput is the amount of data transferred over a period of time.
Latency / Response Time

Advanced DBI tutorial
© Tim Bunce
July 2007

m | atency is the time delay between the moment something is initiated, and the

moment one of its effects begins or becomes detectable.

Latency is often more important than Throughput
m Reducing latency is often harder than increasing bandwidth

Advanced DBI tutorial
© Tim Bunce
July 2007

Streaming & Round-trips

® \\NVhich would be fastest?

A: 10MBit/sec connection to server in next room
B: 100MBit/sec connection to server in next city

® Answer:
It depends on the workload.

® Think about streaming and round-trips to the server
m SELECT results are streamed, they flow without per-row feedback.
m INSERT statements typically require a round-trip per row.

® Reduce round-trips, and try to do more on each one

m Stored procedures
m Bulk inserts

Advanced DBI tutorial
© Tim Bunce
July 2007

Do More Per Trip - Example

Background: clients can set spending rate limits of X amount per Y seconds
®m spend_limit table has fields: accural, debit_max, start_time, period

Task:
m [f time is after start_time + period
— then start new period : set start_time=now and accural=spend
— else accrue spend in current period : set accural = accural + spend
m Return flag to indicate if accrual was already greater than debit_max
® Minimize time table is locked

my S$period_cond sgl = "UNIX TIMESTAMP() > (UNIX TIMESTAMP(start time) + period)";
my S$spend limit sth = $dbh->prepare cached(gqg{
UPDATE spend limit SET
accrual = IF (S$Speriod _cond sql,
0 + ? + (0*LAST INSERT ID(0)),
accrual + ? + (0*LAST INSERT ID(accrual>debit max))
) s
start time = IF ($period cond sql, NOW(), start time)
WHERE key=? 10
)i

Advanced DBI tutorial
© Tim Bunce
July 2007

Latency 1s King

® Small changes can have big effects
® on busy systems with concurrent threads/processes
® can push you ‘over the edge’ or pull you back from it

m refer to queuing theory, for example:
— http://csdl.computer.org/comp/mags/ds/2006/01/01001.pdf
— http://blogs.msdn.com/ricom/archive/2006/07/24/677566.aspx

® CPU time is a critical resource
® while waiting for I/O useful work is being done for the thread
® while waiting for CPU no useful work is being done
m jt's dead time

O 7

Advanced DBI tutorial
© Tim Bunce
July 2007

Cache, Cache, Cache!

® (Caching is a fundamental performance technique
® (Caching is applicable to all levels of an application

® (Caching makes the world go round so fast, kind'a

Cache whole pages (reverse proxies, web accelerators)

Cache ready-made components of pages

Cache results of queries that provide data for pages

Cache simple lookups on client to simplify joins and reduce data volume
Cache statement execution plan by using prepare ()

Cache prepared statement handles

Cache database handles of those statement handles

Cache (memoize) idempotent functions

Cache common subexpressions in busy blocks

® High cache hit ratio is not necessarily a good sign.
® Measure response time under-load, mix-n-match methods, measure again

12

Advanced DBI tutorial
© Tim Bunce
July 2007

Performance 101

® Start at the beginning
m Pick the right database and hardware for the job, if you have the choice.
® To do that you need to understand the characteristics of
— the job, the databases, and the hardware
®m Understand the performance trade-off's in schema design.
m \Worth a whole tutorial... but not this one.
® General tips
m Know all the elements that contribute to overall latency
m | atency has layers, just like onions (and Ogres). Dig in.
m \Work close to the data to reduce round-trip x latency costs
m Proprietary bulk-load is almost always faster than Perl
® Don't trust third-party benchmarks
® Too many variables. Measure for yourself. Focus on resonse time under load.
= Mix 'n Match techniques as needed 13

Prepare for speed

Advanced DBI tutorial
© Tim Bunce
July 2007

® “SELECT ..."” -what happens in the server...
— Receive and parse and compile the SQL statement into internal form
— Get details for all the selected tables
— Check access rights for each
— Get details for all the selected fields
— Check data types in expressions
— Get details for the indices on all the fields in where/join clauses
— Develop an optimised query 'access plan' for best execution

®m This can be an expensive process
— especially the 'access plan’ for a complex multi-table query

® prepare() - lets you cache all the work before multiple execute() 's

— for databases that support prepared statements

® Some databases, like MySQL v4, don't cache the information
— but have simpler and faster, but less powerful, plan creation

14

Advanced DBI tutorial
© Tim Bunce
July 2007

dCceg SS

The best laid plans

Query optimisation is hard
— Intelligent high quality cost based query optimisation is really hard!

Know your optimiser
— Oracle, Informix, Sybase, DB2, SQL Server, MySQL etc. all slightly different.

Check what it's doing
- Use tools to see the plans used for your queries - very helpful!
Help it along
m Most 'big name' databases have a mechanism to analyse and store the key distributions of
indices to help the optimiser make good plans.
— Important for tables with ‘skewed’ (uneven) key distributions
- Beware: keep it fresh, old key distributions might be worse than none
m Some also allow you to embed 'hints' into the SQL as comments
- Beware: take it easy, over hinting hinders dynamic optimisation

Write good SQL to start with!

— Worth another whole tutorial, but not this one.

— Poor SQL, and/or poor schema design, makes everything else I'm saying here pointless. 15

MySQL’s EXPLAIN PLAN

® To generate a plan:
EXPLAIN SELECT tt.TicketNumber, tt.Timeln,

tt.ProjectReference, tt.EstimatedShipDate,

tt.ActualShipDate, tt.ClientID,
tt.ServiceCodes, tt.RepetitivelD,

tt.CurrentProcess, tt.CurrentDPPerson,
tt.RecordVolume, tt.DPPrinted, et.COUNTRY,

et 1.COUNTRY, do.CUSTNAME
FROM tt, et, et AS et 1, do
WHERE tt.SubmitTime IS NULL
AND tt.ActualPC = et.EMPLOYID
AND tt.AssignedPC = et 1.EMPLOYID
AND tt.ClientID = do.CUSTNMRBR;

® The plan is described using results like this:

TABLE TYPE POSSIBLE KEYS KEY
et ALL PRIMARY NULL
tt ref AssignedPC,ClientID,ActualPC ActualPC
et_l eq_ref PRIMARY PRIMARY
do eq_ref PRIMARY PRIMARY

KEY LEN REF

NULL NULL

15 et .EMPLOYID
15 tt.AssignedPC
15 tt.ClientID

ROWS EXTRA
74

Advanced DBI tutorial
© Tim Bunce
July 2007

52 where used

1
1

16

Advanced DBI tutorial
© Tim Bunce
July 2007

Oracle’s EXPLAIN PLAN

To generate a plan:
EXPLAIN PLAN SET STATEMENT ID = 'Emp Sal’ FOR
SELECT ename, job, sal, dname
FROM emp, dept
WHERE emp.deptno = dept.deptno
AND NOT EXISTS
(SELECT * FROM salgrade
WHERE emp.sal BETWEEN losal AND hisal);

That writes plan details into a table which can be queried to yield results like this:
ID PAR Query Plan

Select Statement Cost = 69602
Nested Loops
Nested Loops
Merge Join
Sort Join
Table Access Full T3
Sort Join
Table Access Full T4
Index Unique Scan T2
Table Access Full T1

O 00 J o U Wb+ O
R NOYYWDd WDND RO

17

File Help

39 queries grabhed

X

30QL Statement Statistics

First executed by user JESTILL at 2002-06-24 08:06:54

Total Executions: 2

Disk reads: 39 Buffer gets: 3063 Rows processed: a1
Sorts: 4 Loads: 2 Parse calls: 1
Average per Execution

Disk reads: 19.5 Buffer gets: 1531.5 Rows processed: 155
Sorts: 2.0 Loads: 1.0 Parse calls: 0.5

30L Selection Criterea
Order SQL hy
~r Disk reads ~ Buffer gets
~r ROWs processed ., Sorts
~r Loads ~ FParse calls
~r Executions o First load

4 Mo ordering
AV Total
~~ Average per execution

~ Descending
~ Ascending

0 Exclude gueries by 3Y3S or 3YSTEM
First user to execute statement |
S0QL matches pattem |
Mazimum number of statements W

File Help
Query Plan for select statement. Cost = 1753
E SORT ORDER BY |2
- UNION-ALL
=- MERGE JOIN
- VIEW
H- SORT GROUP BY
é- VIEW of 5¥5.DBA_FREE_SPACE
- UNION-ALL
5- MESTED LOOPS
5- MESTED LOOPS
TABLE ACCESS FULL of 3¥3.FILES
H- TABLE ACCESS CLUSTER of S¥3.FETS
L INDEX UNIQUE SCAN HON-UNIQUE of SY3.1_T3#
TABLE ACCESS CLUSTER of SYS.T5%
=- NESTED LOOPS v
Query Step Details
Cost: 330 (Estimate of the cost of this step)
Cardinality: 6243 (Estimated number of rows fetched by this step)
Eytes: 25689914 (Estimated number of bytes fetched by this step)
30QL Editor
select
f. tablespace name, I
f.file_name,
f.status,
round (f. bytes /1049576, 2} bytes,
5. maxfree,
f.autoextensible,
round (£ maxbytes 1048576, &) maxbytes,
round{ (f. increment by *+ 8192 / 1048576, 2) increment by
from dba_data files £, {
select
file_id,
round (mazx(bytes 1048576), &) MAEFREE
from dba_free space
group by file id
o=
where £ file id = =. file_id
and f.tablespace_name like ‘% 7
1 e =11

Capture 3QL | Copy 1o Explain | Close |

Clear S0QL Cache

Explain |

o

Advanced DBI tutorial
© Tim Bunce
July 2007

Changing plans (hint hint)

Most database systems provide a way to influence the execution plan
m typically via ‘hints’

Oracle supports a very large and complex range of hints
m Hints must be contained within special comments /*+ .. */

SELECT /*+ INDEX(tablel indexl) */ foo, bar
FROM tablel WHERE keyl=1 AND key2=2 AND key3=3;

MySQL has a very limited set of hints
m Hints can optionally be placed inside comments /*!' .. */

SELECT foo, bar FROM tablel /*! USE INDEX (keyl,key2) */
WHERE keyl=1] AND key2=2 AND key3=3;

Use sparingly! Generally as a last resort.
® A hint may help now but later schema (or data) changes may make it worse.
m Usually best to let the optimizer do its job

19

Advanced DBI tutorial
© Tim Bunce
July 2007

Respect your server’s SQL cache

Optimised Access Plan and related data can be cached within server
— Oracle: automatic caching, shared across connections, cache keyed by SQL.
— MySQL v5: explicit but hidden by DBD::mysql. Not shared, even within a connection.

Compare do ("insert .. $id");
with do("insert .. ?", undef, $id);

Without placeholders, SQL string varies each time
— S0 no matching statement can be found in the servers' SQL cache
— so time is wasted creating a new access plan
— the new statement and access plan are added to cache
— so the cache fills and other statements get pushed out
— on a busy system this can lead to ‘thrashing’ (churning of the query plan cache)

Oracle now has a way to avoid/reduce this problem
— it can effectively edit the SQL to replace literal constants with placeholders
— but quality of the execution plan can suffer

For MySQL do () always causes re-planning. Must use prepare () to reuse. 20

Advanced DBI tutorial
© Tim Bunce

July 2007

Hot handles

Avoid using $dbh->do (...) in a speed-critical loop
It's usually creating, preparing and destroying a statement handle each time

m
Sdbh->prepare (...)and $sth->execute () instead

m Use Ssth =

Using prepare () moves work out of the loop
m Does as much preparation for later execute () as possible
m SO0 execute () has as little work to do as possible

For example... convert
Sdbh->do ("insert ..

into S$sth = $dbh->prepare ("insert ..
for @id list’

?", undef, $) for @id list;

')Il)

Ssth->execute ($)

This often gives a significant performance boost
— even where placeholders are emulated, such as DBD::mysql with MySQL 4.0

— because it avoids statement handle creation overhead 29

Advanced DBI tutorial
© Tim Bunce
July 2007

Sling less for speed

while (@row = $sth->fetchrow array) { }
m one column: 51,155 fetches per second
m 20 columns: 24,032 fetches per second

while (Srow = $Ssth->fetchrow arrayref) { }
® one column: 58,653 fetches per second - approximately 12% faster
m 20 columns: 49,390 fetches per second - approximately 51% faster

while (Srow = shift (@Srowcache)

|| shift (@{S$rowcache=S$sth->fetchall arrayref (undef, Smax rows)})) { }
one column: 348,140 fetches per second - by far the fastest!
20 columns: 42,128 fetches per second - now slower than fetchrow arrayref!

|
|
m Why? Balance time saved making fewer calls with time spent managing more memory
m Do your own benchmarks to find what works best for your situations

Notes:
m Tests used DBD::mysql on 100,000 rows with fields 9 chars each. $max_rows=1000;

m Time spent inside fetchrow_* method is ~0.000011s (~90,000 per second) on old slow cpu.
22

Advanced DBI tutorial
© Tim Bunce
July 2007

Bind those columns!

Compare
while (Srow = S$sth->fetchrow arrayref) ({
print “$row->[0]: Srow->[1]\n";
}
with

$sth->bind columns (\$key, \Svalue);
while ($Ssth->fetchrow arrayref) ({
print “Skey: Svalue\n”;

No row assignment code!
No column access code!
... jJust magic

23

Do more with less!

Reduce the number of DBI calls
— The DBI is fast -- but it isn’t free!

Using RaiseError is faster than checking return values
— and much faster than checking SDBI::err or $Sh->err

Use fetchrow * in preference to fetchall *

— unless you want to keep all the rows for later
— if you do, then...

Using fetchall arrayref (Or selectall arrayref) is faster

— Ifusing a driver extension compiled with the DBI’s Driver.xst wrapper (most are)
— because the loop is written in C and doesn’t make a method call per row

Using fetchall arrayref is possible for very large result sets

— the $max rows parameter limits rows returned (and memory consumed)

— just add an outer loop to process the results in ‘batches’, or do it in-line:
Srow = shift (@Scache)

| | shift @{Scache=S$sth->fetchall arrayref (undef, 1000) };

Advanced DBI tutorial
© Tim Bunce
July 2007

24

Speedy Summary

Think about the big picture first

— Choice of tools, schema design, partitioning, latency, etc.
Check the access plans for your statements

— Teach your database about any uneven key distributions
Use placeholders - where supported

— Especially for any statements that will be executed often with varying values
Replace do () in aloop

— with prepare () and execute ()

Sling less data for faster row fetching
— Or sling none per row by binding columns to perl variables

Do more with less by using the DBI in the most efficient way
— Make fewer, better, DBl method calls

Other important things to consider...

Advanced DBI tutorial
© Tim Bunce
July 2007

— your perl code, plus hardware, operating system, and database configuration etc.

25

Optimizing Perl - Some Tips

Perl is fast, but not that fast...

Still need to take care with apparently simple things in 'hot' code
— Function/method calls have significant overheads per call. Especially with args.
— Copying data also isn't cheap, especially long strings (allocate and copy)
— Perl compiles to 'op codes' then executes them in a loop...
— The more ops, the slower the code (all else being roughly equal).
— Try to do more with fewer ops. Especially if you can move loops into ops.

Key techniques include:

Advanced DBI tutorial
© Tim Bunce
July 2007

— Caching at many levels, from common sub-expression elimination to web caching

— Functional programming: @result = map { .. } grep { .. } @data;
— Reduce method calls by pushing loops down to lower layers

But don't get carried away... only optimize hot code, and only if needed
— Don't optimize for performance at the cost of maintenance. Learn perl idioms.
— Beware "Compulsive Tuning Disorder" - Gaja Krishna Vaidyanatha

— And remember that "Premature optimization is the root of all evil" - Donald Knuth

26

Profiling DBI Performance

Time flies like an arrow
(fruit flies like a banana)

Advanced DBI tutorial
© Tim Bunce
July 2007

How fast was that?

The DBI has performance profiling built in

Overall summary:

$ DBI_ PROFILE=1 ex/profile.pl
DBI::Profile: 0.190639s 20.92% (219 calls) profile.pl @ 2006-07-24 15:47:07

Breakdown by statement:

$ DBI_ PROFILE='!Statement’ ex/profile.pl
DBI::Profile: 0.206872s 20.69% (219 calls) profile.pl @ 2006-07-24 15:44:37
o=>

0.001403s / 9 = 0.000156s avg (first 0.001343s, min 0.000002s, max 0.001343s)
'"CREATE TABLE ex profile (a int)' =>

0.002503s
"INSERT INTO ex profile (a) VALUES (?)' =>

0.193871s / 100 = 0.001939s avg (first 0.002119s, min 0.001676s, max 0.002251s)
'SELECT a FROM ex profile' =>

0.004776s / 108 = 0.000044s avg (first 0.000700s, min 0.000004s, max 0.003129s)

28

Advanced DBI tutorial
© Tim Bunce
August 2006

$ DBI_PROFILE='!Statement:!MethodName' ex/profile.pl
DBI::Profile: 0.203922s (219 calls) profile.pl @ 2006-07-24 15:29:29

o=>
'"FETCH' =>
0.000002s
"STORE' =>

0.000039s / 5 = 0.000008s avg (first 0.000019s, min 0.000002s, max 0.000019s)
'connect' =>
0.001336s

'CREATE TABLE ex profile (a int)' =>
'do' =>
0.002324s

"INSERT INTO ex profile (a) VALUES (?)' =>
Idol =>
0.192104s / 100 = 0.001921s avg (first 0.001929s, min 0.001520s, max 0.002699s)

'SELECT a FROM ex profile' =>
'execute’ =>
0.000082s
'fetchrow array' =>
0.000667s / 101 = 0.000007s avg (first 0.000010s, min 0.000006s, max 0.000018s)
'prepare’ =>
0.000122s
'selectall arrayref' =>
0.000676s
'selectall hashref' =>
0.003452s
29

Profile of a Profile

Profiles ‘top level’ calls from application into DBI

Advanced DBI tutorial
© Tim Bunce
July 2007

Profiling is controlled by, and collected into, $h->{Profile} attribute

Child handles inherit reference to parent $h->{Profile}
— So child handle activity is aggregated into parent by default

When enabled by DBI_PROFILE env var

— uses a single $h->{Profile} shared by all handles
— so all activity is aggregated into a single data tree

Data is dumped when the $h->{Profile} object is destroyed

30

Advanced DBI tutorial
© Tim Bunce
July 2007

Profile Path = Profile Data

e The Path determines where each sample is accumulated within the Data hash tree

Sh->{Profile}->{Path} = []
Sh->{Profile}->{Data} = [...accunul ated sanple data...]

$h->{Profile}->{Path} =
$h->{Profile}->{Data} =

“1MethodName”]
“prepare” } -> [...]
“execute” } > [...]

P> 0 e]

Sh->{Profile}->{Path} = [“!Statement”, “!MethodName”]
Sh->{Profile}->{Data} = { “INSERT ...” } -> { “prepare” } -> |
-> { “execute” } -> |
{ “SELECT ...” } -> { “prepare” } -> |
-> { “execute” } -> |

e) bt —)

31

Advanced DBI tutorial
© Tim Bunce
July 2007

Profile Leaf Node Data

® Each leaf node is a ref to an array:
[

106, # 0: count of samples at this node
0.0312958955764771, # 1l: total duration
0.000490069389343262, # 2: first duration
0.000176072120666504, # 3: shortest duration
0.00140702724456787, # 4: longest duration
1023115819.83019, # 5: time of first sample
1023115819.86576, # 6: time of last sample

m First sample to create the leaf node populates all values
m | ater samples reaching that node always update elements 0, 1, and 6
® and may update 3 or 4 depending on the duration of the sampled call

32

Advanced DBI tutorial

Profile Path Elements

© Tim Bunce
July 2007

Kind

Example Use

Example Result

“{AttributeNane}”

“{Statement}"”
“{Username}”
“{AutoCommit}"”

“{private attr}”

“SELECT ..."

“timbunce”

uin

“t he value of private attr”

”!'\/Hg' c"

“1Statement”
“1MethodName”
“1File”
“1Caller2”
“1Time~3600"

“SELECT ..."

“selectrow array”

“MyFoo.pm”

“MyFoo.pm line 23 via Bar.pm line 9”
#1185112800"

\&subr outi ne

sub { “bar” }

llbarll

“&subname”

“&ormstd n3”

list returned by function, see later slide

\Sscalar

\ $Package: : Var

the value in $Package: : Var

anyt hi ng el se

') fooll

rZ) fOO"

33

Advanced DBI tutorial
© Tim Bunce
July 2007

“1Statement” vs “{Statement}”

® “{Statement}” is always the value of the Statement attribute
— Fine for statement handle

— For database handles it’s the last statement executed
— That’s often not useful, or even misleading, for profiling

® “IStatement” is smarter

— Is an empty string for methods that are unrelated to current statement
® ping, commit, rollback, quote, dbh attribute FETCH & STORE, etc.

— S0 you get more accurate separation of profile data using “! Statement”

34

Advanced DBI tutorial
© Tim Bunce
July 2007

Managing statement variations

® [or when placeholders aren’t being used or there are tables with numeric suffixes.
® A'‘snorm std n3’inthe Path maps to ‘IStatement’ edited in this way:

s/\b\d+\b/<N>/g; # 42 -> <N>
s/\b0x[0-9A-Fa-f]+\b/<N>/g; # O0XFE -> <N>

s/'.*?2'/'<8>"/qg; # single quoted strings (doesn't handle escapes)

s/".*?2"/"<8>"/qg; # double quoted strings (doesn't handle escapes)

convert names like 10920001231 into log<N>
s/([a-z_1+)(\d{3,})\b/${1}<N>/iegqg;

abbreviate massive "in (...)" statements and similar

s!((\s*<[NS]>\s*,\s*){100,})!sprintf("$2,<repeated %d times>",length($1)/2)!eqg;

® |t's aggressive and simplistic but usually very effective.

® You can define your own custom subs in the DBI::ProfileSubs namespace
35

Advanced DBI tutorial

Profile specification

® Profile specification
B <path> / <class> / <args>

B Sh->{Profile} = '...same...';

® C(lass
. Currently only controls output formatting

m Other classes should subclass DBI::Profile

® DBI::Profile is the default
®m provides a basic summary for humans

® |arge outputs are not easy to read
®m can't be filtered or sorted

© Tim Bunce
July 2007

DBI PROFILE='!Statement:!MethodName/DBI: :ProfileDumper: :Apache/argl:arg2:arg3’

36

Advanced DBI tutorial
© Tim Bunce
July 2007

Working with profile data

® To aggregate sample data for any part of the tree

— to get total time spent inside the DBI
— and return a merge all those leaf nodes

$time in dbi = dbi profile merge(my S$totals=[], $node);

® To aggregate time in DBI since last measured
— For example per-httpd request

my S$time in dbi 0;

$dbh->{Profile}) { # if profiling enabled

if (my $Profile
$time in dbi = dbi profile merge([], S$Profile->{Data});
$Profile->{Data} = undef; # reset the profile Data
}
add $time in dbi to httpd log
37

dbiprof

DBI::ProfileDumper
m writes profile data to dbi.prof file for analysis

DBI::ProfileDumper::Apache
m for mod_perl, writes a file per httpd process/thread

DBI::ProfileData
B reads and aggregates dbi.prof files
B can remap and merge nodes in the tree

dbiprof utility
®m reads, summarizes, and reports on dbi.prof files
m by default prints nodes sorted by total time
® has options for filtering and sorting

Advanced DBI tutorial
© Tim Bunce
July 2007

38

Advanced DBI tutorial
© Tim Bunce
July 2007

Profile something else

® Adding your own samples

use DBI::Profile (dbi profile dbi_ time);
my Stl = dbi time(); # floating point high-resolution time
... execute code you want to profile here ...

my $t2 = dbi time();
dbi profile($h, $statement, Smethod, $tl, $t2);

® The dbi profile function returns a ref to the relevant leaf node

® My new DashProfiler module on CPAN is built on dbi profile
39

Attribution

Names and Places

Advanced DBI tutorial
© Tim Bunce
July 2007

Attribution - For Handles

Two kinds of attributes: Handle Attributes and Method Attributes

A DBI handle is a reference to a hash

Handle Attributes can be read or set by accessing the hash via the reference
Sh->{AutoCommit} = 0;
Sautocomitting = S$h->{AutoCommit};

Some attributes are read-only
$sth->{NUM OF FIELDS} = 42; # fatal error

Using an unknown attribute triggers a warning
$Ssth->{AutoCommat} = 42; # triggers a warning
Sautocomitting = S$sth->{AutoCommat}; # triggers a warning
— driver-private attributes (which have lowercase names) do not trigger a warning

41

Advanced DBI tutorial
© Tim Bunce
July 2007

Attribution - For Methods

Two kinds of attributes: Handle Attributes and Method Attributes

Many DBI methods take an ‘attributes’ parameter
— in the form of a reference to a hash of key-value pairs

The attributes parameter is typically used to provide ‘hints’ to the driver
— Unrecognised attributes are simply ignored
— So invalid attribute name (like typos) won't be caught

The method attributes are generally unrelated to handle attributes
— The connect () method is an exception

— In future prepare () may also accept handle attributes for the new handle

Ssth = $dbh->prepare($Ssqgl, { RaiseError => 0 }); # one day

42

Advanced DBI tutorial
© Tim Bunce
July 2007

What's in a name?

® The letter case used for attribute names is significant
— plays an important part in the portability of DBI scripts

® Used to signify who defined the meaning of that name and its values

Case of name Has a meaning defined by

UPPER CASE Formal standards, e.g., X/Open, SQL92 etc (portable)
MixedCase DBI API (portable), underscores are not used.

lower case Driver specific, ‘private’ attributes (non-portable)

® Each driver has its own prefix for its private method and handle attributes
— Ensures two drivers can’t define different meanings for the same attribute

$sth->bind param(1, S$value, { ora_type => 97, ix type => 42 });

43

Handling your Handles

Get a grip

Advanced DBI tutorial
© Tim Bunce
July 2007

Let the DBI cache your handles

® Sometimes it's not easy to hold all your handles
- e.g., library code to lookup values from the database

® The prepare cached() method
— gives you a client side statement handle cache:

sub lookup foo {
my (Sdbh, $id) = @ ;
Ssth = $dbh—>prepare_cached("select foo from table where id=?");
return Sdbh->selectrow array($sth, $id);

}

® On later calls returns the previously cached handle
— for the given statement text and any method attributes

® (Can avoid the need for global statement handle variables

— which can cause problems in some situations, see later
45

Advanced DBI tutorial
© Tim Bunce
July 2007

Some prepare cached () Issues

A cached statement handle may still be Active

®m because some other code is still fetching from it
m or didn't fetch all the rows (and didn't didn't call finish)
m perhaps due to an exception

Default behavior for prepare cached ()
m if Active then warn and call finish ()

Rarely an issue in practice

But if it is...
m Alternative behaviors are available via the $is active parameter
$sth = S$dbh->prepare cached($sql, \%attr, $if active)
m See the docs for details

46

Advanced DBI tutorial

Keep a handle on your databases

® (Connecting to a database can be slow
— Oracle especially so

® Try to connect once and stay connected where practical
— We'll discuss web server issues later

® The connect cached () method ...
m Acts like prepare cached () but for database handles
m |ike prepare cached (), it's handy for library code

m |t also checks the connection and automatically reconnects if it's broken
m \Works well combined with prepare cached(), see following example

© Tim Bunce
July 2007

47

Advanced DBI tutorial
© Tim Bunce
July 2007

A connect cached () example

® Compare and contrast...
my Sdbh = DBI->connect (..);
sub lookup foo 1 {
my ($id) = @ ;
$sth = Sdbh->prepare cached("select foo from table where id=?");
return $dbh->selectrow array(S$sth, $id);

O with...
sub lookup foo 2 {
my ($id) = @_;
my $dbh = DBI->connect cached(..);
Ssth = $dbh—>prepare_cached("select foo from table where id=?");
return $dbh->selectrow array($Ssth, $id);

Clue: what happens if the database is restarted? 48

Advanced DBI tutorial
© Tim Bunce
July 2007

Some connect cached () Issues

® Because connect cached () may return a new connection...
m jt's important to specify all significant attributes within the connect() call

B e.g.,, AutoCommit, RailiseError, PrintError

® So pass the same set of attributes into all connect calls

® Similar, but not quite the same as Apache::DBI
m Doesn’t disable the disconnect () method.

® The caches can be accessed via the CachedKids handle attribute
B Sdbh->{CachedKids} - for prepare cached()
B Sdbh->{Driver}->{CachedKids} - for connect cached /()

m Could also be tied to implement LRU and other size-limiting caching strategies
tie %{$dbh->{CachedKids}}, SomeCacheModule;

49

Find your ChildHandles

® Each handles keeps track of its child handles

® The ChildHandles attribute returns a reference to an array
Sarray ref = $h->{ChildHandles};

®m The elements of the array are weak-refs to the child handles

®m An element becomes undef when the handle is destroyed

® So you can recursively list all your handles

sub show child handles {
my ($h, $level) = @ ;
printf "%sh %s %s\n", $h->{Type}, "\t" x $level, $h;
show child handles($, $level + 1)
for (grep { defined } @{$h->{ChildHandles}});
}
my %drivers = DBI->installed drivers();
show child handles($, 0) for (values %drivers);

® See my Apache::Status::DBI module for good example

Advanced DBI tutorial
© Tim Bunce
July 2007

50

Binding (Value Bondage)

Placing values in holders

Advanced DBI tutorial
© Tim Bunce
July 2007

First, the simple stuff...

After calling prepare () on a statement with placeholders:
$sth = Sdbh->prepare (“select * from table where kl=? and k2=2");

Values need to be assigned (‘bound’) to each placeholder before the
database can execute the statement

Either at execute, for simple cases:
Ssth->execute (Spl, S$p2);

or before execute:
$sth->bind param(l, S$pl);
$sth->bind param(2, $p2);
Ssth->execute;

52

Advanced DBI tutorial
© Tim Bunce
July 2007

Then, some more detail...

® If Ssth->execute (..) specifies any values, it must specify them all

® Bound values are sticky across multiple executions:
$sth->bind param(l, $pl);
foreach my $p2 (@p2) {
$sth->bind param(2, $p2);

Ssth->execute;

® The currently bound values are retrievable using:
$bound values = %{ $sth->{ParamValues} };
— Not implemented by all drivers yet

53

Your TYPE or mine/?

® Sometimes the data type for bind values needs to be specified

use DBI gw(:sgl types);
— to import the type constants

$sth->bind param(1l, $value, { TYPE => SQL INTEGER });
— to specify the INTEGER type
— which can be abbreviated to:

$sth->bind param(l, $value, SQL INTEGER);

® To just distinguish numeric versus string types, try
$sth->bind param(1l, $value+0); # bind as numeric value

$sth->bind param(1l, ”“S$value”); # bind as string value
— Works because perl values generally know if they are strings or numbers. So...

Advanced DBI tutorial
© Tim Bunce
July 2007

— Generally the +0 or ”” isn't needed because $value has the right ‘perl type’ already

54

Got TIME for a DATE?

Date and time types are strings in the native database format

Advanced DBI tutorial
© Tim Bunce
July 2007

® many valid formats, some incompatible or ambiguous 'MM/DD/YYYY' vs 'DD/MM/YYYY"

Obvious need for a common format
m The SQL standard (ISO 9075) uses 'YYYY-MM-DD' and 'YYYY-MM-DD HH:MM:SS'

DBI now says using a date/time TYPE mandates ISO 9075 format
$sth->bind param(l, "2004-12-31", SQL DATE);

$sth->bind param(2, "2004-12-31 23:59:59", SQL DATETIME);
$sth->bind col(l, \$foo, SQL DATETIME); # for selecting data

Driver is expected to convert to/from native database format
m New feature, as of DBI 1.43, not yet widely supported

55

Advanced DBI tutorial
© Tim Bunce
July 2007

Some TYPE gotchas

Bind TYPE attribute is just a hint

— and like all hints in the DBI, they can be ignored
— the driver is unlikely to warn you that it's ignoring an attribute

Many drivers only care about the number vs string distinction
— and ignore other kinds of TYPE value

For some drivers/databases that do pay attention to the TYPE...
— using the wrong type can mean an index on the value field isn’t used
— or worse, may alter the effect of the statement

Some drivers let you specify private types
$sth->bind param(l, Svalue, { ora type => 97 });

56

Error Checking & Error Handling

To err is human,
to detect, divine!

Advanced DBI tutorial
© Tim Bunce
July 2007

The importance of error checking

® Errors happen!

® Failure happens when you don't expect errors!
— database crash / network disconnection
— lack of disk space for insert, or even select (sort space for order by)
— server math error on select (divide by zero while fetching rows)
— and maybe, just maybe, errors in your own code [Gasp!]

m Beat failure by expecting errors!

m Detect errors early to limit effects
— Defensive Programming, e.g., check assumptions
— Through Programming, e.g., check for errors after fetch loops

®m Undefined values are your friends: always enable warnings

— They are your ‘canary in the coal mine’ giving you early warning
58

Advanced DBI tutorial
© Tim Bunce
July 2007

Error checking - ways and means

® Error checking the hard way...

Sh->method or die "DBI method failed: $DBI::errstr";
Sh->method or die "DBI method failed: $DBI::errstr";
Sh->method or die "DBI method failed: $DBI::errstr";

® Error checking the smart way...

Sh->{RaiseError} = 1;
Sh->method;
Sh->method;
Sh->method;

59

Advanced DBI tutorial
© Tim Bunce
July 2007

Handling errors the smart way

Setting RaiseError make the DBI call die for you

For simple applications immediate death on error is fine
— The error message is usually accurate and detailed enough
— Better than the error messages some developers use!

For more advanced applications greater control is needed, perhaps:
— Correct the problem and retry
— or, Fail that chunk of work and move on to another
— or, Log error and clean up before a graceful exit
— or, whatever else to need to do

Buzzwords:
— Need to catch the error exception being thrown by RaiseError

60

Advanced DBI tutorial
© Tim Bunce
July 2007

Catching the Exception

® Life after death

Sh->{RaiseError} = 1;

eval {
foo();
Sh->method; # 1if it fails then the DBI calls die
bar ($h) ; # may also call DBI methods

} i

if (s@) { # $Q@ holds error message

. handle the error here ..

}

® Bonus

— Other, non-DBI, code within the eval block may also raise an exception
— that will also be caught and can be handled cleanly

61

Advanced DBI tutorial
© Tim Bunce
July 2007

Picking up the Pieces

So, what went wrong?

$@
- holds the text of the error message

if (S$SDBI::err && SQ@ =~ /~(\S+) (\S+) failed: /)
— then it was probably a DBI error

— and $1 is the driver class (e.g. DBD: : foo: :db), $2 is the name of the method (e.g. prepare)
SDBI::lasth

- holds last DBI handle used (not recommended for general use)
Sh->{Statement}

- holds the statement text associated with the handle (even if it's a database handle)

Sh->{ShowErrorStatement} = 1
— appends sh->{Statement} to RaiseError/PrintError messages:
- DBD::foo::execute failed: duplicate key [for =~ "insert ..”']
— for statement handles it also includes the $h->{ParamValues} if available.
— Makes error messages much more useful. Better than using $pBI::lasth
— Many drivers should enable it by default. Inherited by child handles.

62

Advanced DBI tutorial
© Tim Bunce
July 2007

Custom Error Handling

® Don’twantto just Print or Raise an Error?

m Now you can Handle it as well...
Sh->{HandleError} = sub { .. };

® The HandleError code
m s called just before PrintError/RaiseError are handled
m jt's passed
— the error message string that RaiseError/PrintError would use
- the DBI handle being used
— the first value being returned by the method that failed (typically undef)
m if it returns false then RaiseError/PrintError are checked and acted upon as normal

® The handler code can
m alter the error message text by changing $ [0]
B USe caller() Or Carp::confess () or similar to get a stack trace

m Use Exception Or a similar module to throw a formal exception object 63

Advanced DBI tutorial
© Tim Bunce
July 2007

More Custom Error Handling

® |t is also possible for HandleError to hide an error, to a limited degree
— use set err () toreset $SDBI::err and $DBI::errstr
— alter the return value of the failed method

Sh->{HandleError} = sub {

my (S$errmsg, $h) = @ ;

return 0 unless Serrmsg =~ /"\S+ fetchrow arrayref failed:/;

return 0 unless $h->err == 1234; # the error to 'hide'

$h->set err(0,""); # turn off the error

$ [2] = [... 1; # supply alternative return value by altering parameter

return 1;

b

® Only works for methods which return a single value and is hard to make reliable
(avoiding infinite loops, for example) and so isn't recommended for general use!
- If you find a good use for it then please let me know.

64

Advanced DBI tutorial
© Tim Bunce
July 2007

Information and Warnings

Drivers can indicate Information and Warning states in addition to Error states
m Uses false-but-defined values of Sh->err and $DBI::err
m Zero "0" indicates a "warning"
® Empty " indicates "success with information" or other messages from database

Drivers should use $h->set err (..) method to record info/warn/error states

® implements logic to correctly merge multiple info/warn/error states
®m info/warn/error messages are appended to errstr with a newline
B Sh->{ErrCount} attribute is incremented whenever an error is recorded

The $h->{HandleSetErr} attribute can be used to influence $h->set err ()

m A code reference that's called by set err and can edit its parameters

B So can promote warnings/info to errors or demote/hide errors etc.
m Called at point of error from within driver, unlike $h->{HandleError}

The sh->{PrintWarn} attribute acts like Sh->{PrintError} but for warnings
m Defaultis on 65

Iransactions

To do or to undo,
that is the question

Advanced DBI tutorial
© Tim Bunce
July 2007

Transactions - Eh?

Far more than just locking
The A.C.I1.D. test

— Atomicity - Consistency - Isolation - Durability
True transactions give true safety

— even from power failures and system crashes!

— Incomplete transactions are automatically rolled-back by the database
server when it's restarted.

Also removes burden of undoing incomplete changes

Hard to implement (for the vendor)
— and can have significant performance cost
Another very large topic worthy of an entire tutorial

67

Advanced DBI tutorial
© Tim Bunce
July 2007

Transactions - Life Preservers

Text Book:

— system crash between one bank account being debited and another being credited.

Dramatic:
— power failure during update on 3 million rows when only part way through.

Real-world:

— complex series of inter-related updates, deletes and inserts on many separate tables
fails at the last step due to a duplicate unique key on an insert.

Locking alone won't help you in any of these situations
— (And locking with DBD::mysql < 2.1027 is unsafe due to auto reconnect)

Transaction recovery would handle all these situations - automatically
— Makes a system far more robust and trustworthy over the long term.

Use transactions if your database supports them.

— If it doesn't and you need them, switch to a different database.
68

Advanced DBI tutorial
© Tim Bunce
July 2007

Transactions - How the DBI helps

Tools of the trade:
m Set AutoCommit off
m Set RaiseError on
m Wrapeval { .. } around the code
m Use $dbh->commit; and $Sdbh->rollback;

Disable AutoCommit via $dbh->{AutoCommit}=0 or $dbh->begin work;
— to enable use of transactions

Enable RaiseError via $dbh->{RaiseError} = 1;

— to automatically 'throw an exception' when an error is detected
Add surrounding eval { .. }

— catches the exception, the error text is stored in s@

Test $@ and then Sdbh->rollback () if set

— note that a failed statement doesn’t automatically trigger a transaction rollback 69

Advanced DBI tutorial
© Tim Bunce
July 2007

Transactions - Example code

Sdbh->{RaiseError} = 1;

$dbh->begin work; # AutoCommit off till commit/rollback
eval {
$dbh->net hod(..) ; # assorted DBI calls
foo(...); # application code
Sdbh->commit; # commit the changes
}i
if (s@) {

warn "Transaction aborted because $@";
eval { $dbh->rollback }; # may also fail

70

Advanced DBI tutorial
© Tim Bunce
July 2007

Transactions - Further comments

The eval { .. } catches all exceptions
— not just from DBI calls. Also catches fatal runtime errors from Perl

Put commit () inside the eval

— ensures commit failure is caught cleanly
— remember that commi t itself may fail for many reasons

Don't forget rol1lback () and that rollback () may also fail

— due to database crash or network failure etc.
— so you'll probably want to use eval { $dbh->rollback };

Other points:

— Always explicitly commit or rollback before disconnect
— Destroying a connected $dbh should always rollback
- END blocks can catch exit-without-disconnect to rollback and disconnect cleanly

— You can use ($dbh && S$Sdbh->{Active}) to check if still connected .

Intermission?

Wheels within Wheels

The DBI architecture
and how to watch it at work

Advanced DBI tutorial
© Tim Bunce
July 2007

Setting the scene

® Inner and outer worlds
- Application and Drivers

® |nner and outer handles
- DBI handles are references to tied hashes

® The DBI Method Dispatcher
-~ gateway between the inner and outer worlds, and the heart of the DBI

... Now we'll go all deep and visual for a while...

74

Advanced DBI tutorial

© Tim Bunce
July 2007
“outer” “inner”
Base classes
DBI DBD::_::common providing
. e fallback
: I TN behavior.
MyDb ‘.
DBD::_:dr DBD::_::db DBD::_:st
DBI::xx handle classes visible to applications ,’I \\\ ,'I \\ ," \\\
(these classes are effectively ‘empty’): SN PN SN
DBI::dr DBI::db DBI::st DBD::A:dr ||\ DBD:A:zdb | DBD:A:st |
MyDb::db MyDb::st DBD::B::dr DBD::B::db DBD::B::st
Alternative db and st classes are used if the
DBl is being subclassed. Parallel handle-type classes implemented by drivers.

75

Advanced DBI tutorial
© Tim Bunce

Architecture of the DBI classes #2

Application ~ [—> ~method5 ‘i
makes calls —> method6 *
to methods
using $dbh
DBI database

handle
object

DBI::db

—>: method1
—>! prepare -:

DBD::A::db
+ method1
/ ; prepare

S do

“4 dispatch 5
—> method4 i "

3 do

:_ndb
method1

prepare
“ do

method4

method5

DBI::st

—> i method

DBD::A::st
method
-

July 2007
DBI::_::common
method4
* method6 76

Handle
Ref.

Anatomy of a DBI handle

outer ’inner”

. DBl:db DBI::db !
. | Hash Attribute |

Hash |— P
v | (tied) / Cache !
| | | i
E Tie / DBI E
! Magic Magic !

 struct imp_dbh_t {

struct dbih_dbc t com;

... implementers ...
... own data ...

" struct dbih_dbc_t {

... DBl data ...

Advanced DBI tutorial
© Tim Bunce
July 2007

77

Advanced DBI tutorial
© Tim Bunce
July 2007

Method call walk-through

Consider a simple prepare call:
Sdbh->prepare(...)

$dbh is reference to an object in the DBI : : db class (regardless of driver)

The DBI::db: :prepare method is an alias for the DBI dispatch method

DBI dispatch calls the driver’s own prepare method something like this:
my Sinner hash ref = tied %$dbh;
my Simplementor class = S$inner hash ref->{ImplementorClass};

$inner hash ref->Simplementor class::prepare(...)

Driver code gets the inner hash

m so it has fast access to the hash contents without t ie overheads

78

Advanced DBI tutorial
© Tim Bunce
July 2007

Watching the DBI in action

® DBI has detailed call tracing built-in
m Can be very helpful in understanding application behaviour
m Shows parameters and results
®m Has multiple levels of detail
m Can show detailed internal information from the DBI and drivers
m Can be written to a file

® Not used often enough

Not used often enough

Not used often enough!
Not used often enough!

79

Advanced DBI tutorial
© Tim Bunce
July 2007

Enabling tracing

® Per handle
Sh->{Tracelevel} = Slevel;
Sh->trace (Slevel) ;
Sh->trace ($level, S$filename); # $filename applies to all handles
Sh->trace ($level, $filehandle); # Sfilehandle applies to all '’
® Trace level only affects that handle and any new child handles created from it
®m Child handles get trace level of parent in effect at time of creation
m Can be setvia DSN: "dbi:Driver (Tracelevel=2):.."

® Global (internal to application)
DBI->trace(...);
m Sets effective global default minimum trace level

® Global (external to application)
®m Enabled using DBI TRACE environment variable
DBI TRACE=digits same as DBI->trace (digits) ;

DBI TRACE=digits=filename same as DBI->trace (digits, filename);
- 80

Advanced DBI tutorial
© Tim Bunce
July 2007

Our program for today...

#!/usr/bin/perl -w

use DBI;
Sdbh = DBI->connect('', '', '', { RaiseError => 1 });
replace price(split(/\s+/, $)) while (<STDIN>);

Sdbh->disconnect;

sub replace price {
my ($id, Sprice) = @ ;
local $dbh->{Tracelevel} = 1;
my $upd = $dbh->prepare ("UPDATE prices SET price=? WHERE id=?");
my Sins = $dbh—>prepare_cached("INSERT INTO prices (id,price) VALUES(?,7?)");
my Srows = Supd->execute (Sprice, $id);

Sins->execute (id, Sprice) if $rows == 0;

(The program is a little odd for the sake of producing a small trace output that can illustrate many concepts) 81

Advanced DBI tutorial
© Tim Bunce
July 2007

Trace level T

® | evel 1 shows method returns with first two parameters, results, and line numbers:

DBI: :db=HASH (0x823c6f4) trace level 0x0/1 (DBI 0x0/0) DBI 1.43 (pid 78730)

<- prepare ('UPDATE prices SET price=? WHERE prod id=?'")=
DBI::st=HASH (0x823a478) at trace-exl.pl line 10

<- prepare cached('INSERT INTO prices (prod id,price) VALUES(?,?)"')=
DBI: :st=HASH (0x823a58c) at trace-exl.pl line 11

<- execute('42.2', 'l1')= 1 at trace-exl.pl line 12

<- STORE ('Tracelevel', 0)= 1 at trace-exl.pl line 4

<- DESTROY (DBI::st=HASH (0x823a478))= undef at trace-exl.pl line 4

® | evel 1 only shows methods called by application
®m not recursive calls made by the DBI or driver

82

Advanced DBI tutorial
© Tim Bunce
July 2007

Trace level 2 and above

Level 2 adds trace of entry into methods, details of classes, handles, and more
— we’'ll just look at the trace for the prepare cached () call here:

-> prepare cached in DBD:: ::db for DBD::mysqgl::db

(DBI: :db=HASH (0x81bcd80)~0x823c6f4

'"INSERT INTO prices (prod id,price) VALUES(?,?)")

-> FETCH for DBD::mysqgl::db (DBI::db=HASH (0x823c6f4)~INNER 'CachedKids")
<- FETCH= undef at DBI.pm line 1507

-> STORE for DBD::mysqgl::db (DBI::db=HASH (0x823c6f4)~INNER 'CachedKids"'
HASH (0x823a5d4))

<- STORE= 1 at DBI.pm line 1508

-> prepare for DBD::mysqgl::db (DBI::db=HASH (0x823c6f4)~INNER

'"INSERT INTO prices (prod id,price) VALUES(?,?)' undef)

<- prepare= DBI::st=HASH(0x823a5a4) at DBI.pm line 1519

<- prepare cached= DBI::st=HASH(0x823a5a4) at trace-exl.pl line 11

m Trace level 3 and above shows more internal processing and driver details
m Use $DBI::neat maxlen to alter truncation of strings in trace output

83

What's new with tracing?

® Trace level now split into trace level (0-15) and trace topics
m DBl and drivers can define named trace topics

$h->{TraceLevel} = "foo|SQL|7";
DBI->connect("dbi:Driver (TraceLevel=SQL|bar):...",
DBI_TRACE = "foo|SQL|7|baz" # environment variable

®m Currently no trace topics have been defined

® Can now write trace to an open filehandle
Sh->trace(S$level, S$filehandle);
® 5o can write trace directly into a scalar using perlio ‘layers’:
open my S$tracefh, '+>:scalar', \my S$tracestr;

Sdbh->trace(l, Stracefh);

® New dbilogstrip utility enables diffing of DBI logs

<)

Advanced DBI tutorial
© Tim Bunce
July 2007

84

DBI for the Web

Hand waving from 30,000 feet

Advanced DBI tutorial
© Tim Bunce
July 2007

Web DBI - Connect speed

Databases can be slow to connect
— Traditional CGl forces a new connect per request

Move Perl and DBI into the web server

— Apache with mod_perl and Apache::DBIl module
— Microsoft IIS with ActiveState's PerlEx

Connections can then persist and be shared between requests
— Apache::DBI automatically used by DBI if loaded
— No CGl script changes required to get persistence

Take care not to change the shared session behaviour
— Leave the $dbh and db session in the same state you found it!

Other alternatives include
— FastCGl (old), SCGI (new), CGl::SpeedyCGIl and CGI::MiniSvr
— DBD::Gofer & DBD::Proxy

86

Advanced DBI tutorial
© Tim Bunce
July 2007

Web DBI - Too many connections

Busy web sites run many web server processes
— possibly on many machines...
— Machines * Processes = Many Connections
— Machines * Processes * Users = Very Many Connections

Limits on database connections
— Memory consumption of web server processes
— Database server resources (memory, threads etc.) or licensing

So... partition web servers into General and Database groups

Redirect requests that require database access to the Database web servers
— Use Reverse Proxy / Redirect / Rewrite to achieve this
— Allows each subset of servers to be tuned to best fit workload

— And/or be run on appropriate hardware platforms
87

Advanced DBI tutorial
© Tim Bunce
July 2007

Web DBI - State-less-ness

® No fixed client-server pair
— Each request can be handled by a different process.
— So can't simply stop fetching rows from $sth when one page is complete and continue
fetching from the same $sth when the next page is requested.
— And transactions can't span requests.
— Even if they could you'd have problems with database locks being held etc.

® Need access to 'accumulated state' somehow:

— via the client (e.g., hidden form fields - simple but insecure)
e Can be made safer using encryption or extra field with checksum (e.g. MD5 hash)

— via the server:

requires a session id (via cookie or url)
in the database (records in a session_state table keyed the session id)

in the web server file system (DBM files etc) if shared across servers
Need to purge old state info if stored on server, so timestamp it
See Apache::Session module

88

Advanced DBI tutorial
© Tim Bunce
July 2007

Web DBI - Browsing pages of results

Re-execute query each time then count/discard (simple but expensive)
— works well for small cheap results sets or where users rarely view many pages
— if count/discard in server then fast initial response, degrades gradually for later pages
- count/discard in client is bad if server prefetches all the rows anyway
— count/discard affected by inserts and deletes from other processes

Re-execute query with where clause using min/max keys from last results
- works well where original query can be qualified in that way

Select and cache full result rows somewhere for fast access
— can be expensive for large result sets with big fields

Select and cache only the row keys, fetch full rows as needed

— optimisation of above, use ROWID if supported, "select ... where key in (...)"
If data is static and queries predictable

— then custom pre-built indexes may be useful

The caches can be stored...

— on web server, e.g., using DBM file with locking (see also ‘spread’)

- on database server, e.g., using a table keyed by session id 89

Advanced DBI tutorial
© Tim Bunce
July 2007

Web DBI - Concurrent editing

® How to prevent updates overwriting each other?

® You can use Optimistic Locking via 'fully qualified update':
update table set ...
where key = Sold key
and fieldl = $old fieldl

and field2 = $old field2 and .. forall other fields

® (Check the update row count

m |fit's zero then you know the record has been changed
— or deleted by another process

® Note

m Potential problems with floating point data values not matching

m Some databases support a high-resolution 'update timestamp' field that can be

checked instead
90

Advanced DBI tutorial
© Tim Bunce
July 2007

Web DBI - Tips for the novice

Test one step at a time

— Test perl + DBI + DBD driver outside the web server first
— Test web server + non-DBI CGI next

Remember that CGl scripts run as a different user with a different environment
— expect to be tripped up by that

DBl $h->trace ($level, S$filename) is your friend
- use it!

Use the perl "-w" and "-T" options.
— Always "use strict;" everywhere

Read and inwardly digest the WWW Security FAQ:
- http://www.w3.org/Security/Fag/www-security-fag.html

Read the CGl related Perl FAQs:
— http://www.perl.com/perl/faqg/
And if using Apache, read the mod_perl information available from:

— http://perl.apache.org 91

Other 1opics

Bulk Operations
Security Tainting
Handling LOB/LONG Data
Callbacks
Fetching Nested Data
Unicode Tools

Advanced DBI tutorial
© Tim Bunce
July 2007

Bulk Operations

Execute a statement for multiple values (column-wise)
$sth = $Sdbh->prepare("insert into table (foo,bar) wvalues (?2,?)");
Stuples = $sth->execute array(\%attr, \Q@foo values, \@bar values);
— returns count of executions, not rows-affected, or undef if any failed

Explicit array binding (column-wise)

$dbh->bind param array(l, \@foo values, \%attr);
$dbh->bind param array (2, \@bar values, \%attr);
$sth->execute array(\%attr) # uses bind param array values

Attribute to record per-tuple status:
ArrayTupleStatus => Sarray ref elements are rows-affected or [err, errstr, state]

Row-wise bulk operations and streaming
$tuples = S$Ssth->execute for fetch(sub {...}, \@tuple status);

Works for all drivers, but some use underlying db bulk API so are very fast! 93

Advanced DBI tutorial
© Tim Bunce
July 2007

DBI security tainting

By default DBI ignores Perl tainting

— doesn't taint database data returned ‘out’ of the DBI
— doesn't check that parameters passed ‘in’ to the DBI are not tainted

The TaintIn and TaintOut attributes enable those behaviours
— |If Perl itself is in taint mode.

Each handle has it's own inherited tainting attributes

— So can be enabled for particular connections and disabled for particular statements, for
example:

Sdbh = DBI->connect (.., { Taint => 1 }); # enable TaintIn and TaintOut
Ssth = $dbh->prepare ("select * from safe table");
Ssth->{TaintOut} = 0; # don’t taint data from this statement handle

Attribute metadata currently varies in degree of tainting
S$sth->{NAME}; — generally not tainted

$dbh->get info(..); — may be tainted if the item of info is fetched from database
94

Handling LONG/BLOB data

What makes LONG / BLOB data special?
m Not practical to pre-allocate fixed size buffers for worst case

Fetching LONGs - treat as normal fields after setting:
m Sdbh->{LongReadLen} - buffer size to allocate for expected data
m Sdbh->{LongTruncOk} - should truncating-to-fit be allowed

Inserting LONGs
® The limitations of string literals (max SQL length, quoting binary strings)
m The benefits of placeholders

Chunking / Piecewise processing not yet supported
®m So you're limited to available memory
m Some drivers support blob read () and other private methods

Advanced DBI tutorial
© Tim Bunce
July 2007

95

Intercepting DBI Method Calls

® An alternative to subclassing
® Added in DBI 1.49 - Nov 2005
®m but not yet documented and still subject to change

® Example:
Sdbh->{Callbacks}->{prepare} = sub { ... }

® Arguments to original method are passed in

® The name of the method is in $_ (localized)

m Callback code can force method call to be skipped

m The Callbacks attribute is not inherited by child handle

® Some special ‘method names’ are supported:

connect_ cached.new

connect cached.reused

Advanced DBI tutorial
© Tim Bunce
July 2007

96

Advanced DBI tutorial
© Tim Bunce
July 2007

Fetching Multiple Keys

e fetchall hashref() now supports multiple key columns

Ssth = Sdbh->prepare(“select state, city, ...");
Ssth->execute;
$data = $sth->fetchall hashref([‘state’, ‘city’]);

Sdata = {
CA => {
LA => { state=>'CA’, city=>'LA', ... },
SF => { state=>'CA’, city=>'SF’, ... },
by
NY => {
NY => { ... },
}

e Also works for selectall hashref () 97

Unicode Tools

Unicode problems can have many causes and occur at many levels
The DBI is Unicode transparent, but drivers might not be
So the DBI provides some simple tools to help:

neat (Svalue)
® Unicode strings are shown double quoted, other strings are single quoted

data string desc($value)

m Returns ‘physical’ description of a string, for example:
“UFT8 on but INVALID ENCODING, non-ASCII, 4 chars, 9 bytes”

data string diff($valuel, $value2)

m Compares the logical characters not physical bytes
®m Returns description of logical differences, else an empty string

data diff($valuel, S$value2)

" Calsdata string desc anddata string diff

Advanced DBI tutorial
© Tim Bunce
July 2007

98

Portability

A Holy Grail
(to be taken with a pinch of salt)

Portability in practice

Portability requires care and testing - it can be tricky

Platform Portability - the easier bit
— Availability of database client software and DBD driver
— DBD::Proxy can address both these issues - see later

Database Portability - more tricky but the DBI offers some help
— Differences in SQL dialects cause most problems
— Differences in data types can also be a problem
— Driver capabilities (placeholders etc.)
— Database meta-data (keys and indices etc.)
— A standard test suite for DBI drivers is needed

DBIx::AnyDBD functionality has been merged into the DBI
— can help with writing portable code, just needs documenting

Advanced DBI tutorial
© Tim Bunce
July 2007

100

SQL Portability - Data Types

® For raw information about data types supported by the driver:

Stype info data = $dbh->type info all(..);

® To map data type codes to names:

Ssth = Sdbh->prepare(“select foo, bar from tablename”);
Ssth->execute;

for my $i (0 .. $sth->{NUM OF FIELDS}) {
printf ”"Column name %s: Column type name: %s”,
Ssth->{NAME}->[S$S1i],
Sdbh->type info($sth->{TYPE}->[$i])->{TYPE NAME};

}

® To select the nearest type supported by the database:

$my date type = $dbh->type info([SQL DATE, SQL TIMESTAMP]);

Advanced DBI tutorial
© Tim Bunce
July 2007

$my smallint type = $dbh->type info([SQL SMALLINT, SQL INTEGER, SQL DECIMAL]);

101

Advanced DBI tutorial
© Tim Bunce
July 2007

SQL Portability - SQL Dialects

How to concatenate strings? Let me count the (incompatible) ways...
SELECT first name || ' ' || last name FROM table
SELECT first name + ' ' + last name FROM table
SELECT first name CONCAT ' ' CONCAT last name FROM table
SELECT CONCAT (first name, ' ', last name) FROM table
SELECT CONCAT (first name, CONCAT(' ', last name)) FROM table

The ODBC way: (not pretty, but portable)
SELECT {fn CONCAT (first name, {£fn CONCAT(' ', last name))}} FROM table

The {£fn ..} will be rewritten by prepare () to the required syntax via a call to
$new sgl fragment = Sdbh->{Rewrite}->CONCAT (”..”)

Similarly for some data types:
SELECT * FROM table WHERE date time > {ts ’'2002-06-04 12:00:00"} FROM table
$new_sql_fragment = Sdbh->{Rewrite}->ts ('2002-06-04 12:00:00")

This 'rewrite' functionality is planned but not yet implemented 102

Advanced DBI tutorial
© Tim Bunce
July 2007

SQL Portability - SQL Dialects

® Most people are familiar with how to portably quote a string literal:
Sdbh->quote ($value)

® You can also portably quote identifiers like table names:
$dbh->quote identifier (Sname);

$dbh->quote identifier (Snamel, S$name2, S$name3, \%attr);

For example:
$dbh—>quote_identifier(undef, 'Her schema', 'My table');
using DBD::Oracle: "Her schema"."My table”
using DBD::mysq|l: "Her schema . My table’

® If three names are supplied then special rules apply based on what get info () returns for
SQL CATALOG NAME SEPARATOR and SQL CATALOG LOCATION:

For example:
$dbh->quote identifier(’"link’, ’'schema’, ’'table’);
using DBD::Oracle: "schema"."table"@"1link"

103

Advanced DBI tutorial
© Tim Bunce
July 2007

SQL Portability - Driver Capabilities

How can you tell what functionality the current driver and database support?
$value = Sdbh->get info(..);

Here’s a small sample of the information potentially available:

AGGREGATE_FUNCTIONS BATCH_SUPPORT CATALOG_NAME_SEPARATOR CONCAT_NULL_BEHAVIOR CONVERT_DATE
CONVERT _| FUNCTIONS CURSOR _ COMMIT BEHAVIOR CURSOR SENSITIVITY DATETIME_| LITERALS DBMS_NAME DBMS VER
DEFAULT_TXN_ISOLATION EXPRESSIONS IN_ORDERBY GETDATA EXTENSIONS GROUP_BY IDENTIFIER _ CASE
IDENTIFIER QUOTE CHAR INTEGRITY KEYWORDS LIKE_ESCAPE_CLAUSE LOCK_TYPES MAX COLUMNS_IN_ “INDEX
MAX_ COLUMNS IN SELECT MAX_IDENTIFIER_LEN MAX_ STATEMENT LEN MAX TABLES IN_SELECT MULT RESULT SETS
oJ CAPABILITIES PROCEDURES SQL_CONFORMANCE TXN_CAPABLE TXN_ISOLATION_OPTION UNION ...

A specific item of information is requested using its standard numeric value

$db version = $dbh->get info(18); # 18 == SQL DBMS VER

The standard names can be mapped to numeric values using:

use DBI::Const::GetInfo;

Sdbh->get info (SGetInfoType{SQL DBMS VER})
— — — 104

Advanced DBI tutorial
© Tim Bunce
July 2007

SQL Portability - Metadata

® (etting data about your data:
$sth = $dbh->table info(...)

— Now allows parameters to qualify which tables you want info on

$sth = $dbh->column info(S$cat, $schema, S$table, $col);

— Returns information about the columns of a table

$sth = $dbh->primary key info($cat, $schema, S$Stable);

— Returns information about the primary keys of a table

@keys = S$dbh->primary key(S$cat, $schema, S$table);

— Simpler way to return information about the primary keys of a table

$sth = $dbh->foreign key info($pkc, $pks, $pkt, $fkc, $fks, $fkt);

— Returns information about foreign keys 105

DBI::SQL::Nano

A

"smaller than micro"

SQL parser

Advanced DBI tutorial
© Tim Bunce
July 2007

DBI::SQL::Nano

The DBI now includes an SQL parser module: DBI: : SQL: : Nano

— Has an API compatible with SQL: : Statement

If sQL: :Statement is installed then DBI: :SQL: :Nano becomes an empty subclass
OfSQL::Statement
— unless the DBI SQL NANO env var is true.

Existing DBD::File module is now shipped with the DBI
— base class for simple DBI drivers
— modified to use DBI::SQL::Nano.

A DBD::DBM driver now ships with the DBI
— An SQL interface to DBM and MLDBM files using DBD::File and DBI::SQL::Nano.

Thanks to Jeff Zucker

107

Advanced DBI tutorial
© Tim Bunce
July 2007

DBI::SQL::Nano

® Supported syntax
DROP TABLE [IF EXISTS] <table name>
CREATE TABLE <table name> <col def list>
INSERT INTO <table name> [<insert col list>] VALUES <val list>
DELETE FROM <table name> [<where clause>]
UPDATE <table name> SET <set clause> [<where clause>]
SELECT <select col list> FROM <table name> [<where clause>] [<order clause>]

® \Where clause
B 3 single"[NOT] column/value <op> column/value" predicate

m multiple predicates combined with ORs or ANDs are not supported
m opmaybeoneofi< > >= <= = <> LIKE CLIKE IS

® |f you need more functionality...
m Just install the SQL::Statement module

— 108

The Power of the Proxy,

Flexing the Multiplex,
and a Pure-Perl DBI!

Thin clients, high availability ...
and other buzz words

Advanced DBI tutorial

DBD::Proxy & DBI::ProxyServer

July 2007

Networking for non-networked databases
DBD::Proxy driver forwards calls over network to remote DBI::ProxyServer

No changes in application behavior
— Only the DBI->connect statement needs to be changed, or...

Proxy can be made completely transparent
— by setting the DBI AUTOPROXY environment variable
— S0 not even the DBI->connect statement needs to be changed!

DBI::ProxyServer works on Win32
— Access to Access and other Win32 ODBC and ADO data sources

Developed by Jochen Wiedmann 110

Advanced DBI tutorial

© Tim Bunce
July 2007
Application DBI::ProxyServer
RPC::pServer
1O:Socket Storable
@
DBI DBI
DBD::Proxy DBD::Foo
RPC::pClient
Storable 10::Socket

111

Advanced DBI tutorial
© Tim Bunce
July 2007

Thin clients and other buzz words

Proxying for remote access: "thin-client"
— No need for database client code on the DBI client

Proxying for network security: "encryption”
— Can use Crypt::IDEA, Crypt::DES etc.

Proxying for "access control" and "firewalls"
— extra user/password checks, choose port number, handy for web servers

Proxying for action control
- e.g., only allow specific select or insert statements per user or host

Proxying for performance: "compression"
— Can compress data transfers using Compress::Zlib

112

The practical realities

Modes of operation for proxy server:

Multi-threaded Mode - one thread per connection

m DBl supports threads in perl 5.6 but recent 5.8.x recommended
m Threads are still not recommended for production use with the DBI

Forking Mode - one process per connection

m Most practical mode for UNIX-like systems
m Doesn’t scale well to large numbers of connections
m Fork is emulated on windows using threads - so see above

Single Connection Mode - only one connection per proxy server process

m Would need to start many processes to allow many connections
= Mainly for testing

Advanced DBI tutorial
© Tim Bunce
July 2007

113

DBD::Gofer - A better Proxy?

DBD::Proxy

DBD::Gofer

Supports transactions

X (not soon)

Supports very large results

X (memory)

Automatic retry supported

Large test suite

Minimal round-trips

Modular & Pluggable classes

Tunable via Policies and attributes

Highly Scalable

NSISNSNININS

Can support client and web caches

X% (%[> | X% % |[% NN

/(will do

Advanced DBI tutorial
© Tim Bunce
July 2007

114

A Gofer Picture

Advanced DBI tutorial
© Tim Bunce
July 2007

Stateless protocol

enables multiple
servers for scaling

Application and load balancing Pluggable transports

http / ssh / gearman / ...

DBI::Gofer::Execute

DBI DBI

DBD::Gofer DBD::Foo

Pluggable Pluggable transports
Policies http / ssh / gearman / ...

115

Advanced DBI tutorial
© Tim Bunce
July 2007

DBD::Multiplex

® DBD::Multiplex
— Connects to multiple databases (DBI DSN's) at once and returns a single $dbh
— By default, executes any method call on that $dbh on each underlying $dbh in turn

® Can be configured to

— modify (insert, update, ..)only masterdb, select from one replica at random
— modify all databases but select from one ("poor man's replication")

— fallback to alternate database if primary is unavailable

— pick database for select atrandom to distribute load

— concatenate select results from multiple databases (effectively a 'union' select)

— return row counts/errors from non-select statements as select results

® one row for each underlying database
— May also acquire fancy caching, retry, and other smart logic in the future

® See: http://search.cpan.org/search?dist=DBD-Multiplex*

— developed by Thomas Kishel and Tim Bunce

— (was) currently undergoing a significant redevelopment 116

Advanced DBI tutorial
© Tim Bunce
July 2007

DBI::PurePerl

Need to use the DBl somewhere where you can’t compile extensions?
m To deliver pure-perl code to clients that might not have the DBI installed?

® On an ISP that won't let you run extensions?
® On a Palm Pilot?

The DBI::PurePerl module is an emulation of the DBI written in Perl

AnyData, CSV, DBM, Excel, LDAP, mysqlPP, Sprite, XBase, etc.
m plus DBD::Proxy!

Enabled via the DBI PUREPERL environment variable:
0 - Disabled
1 - Automatically fall-back to DBI::PurePerl if DBI extension can’t be bootstrapped
2 - Force use of DBI::PurePerl

Reasonably complete emulation - enough for the drivers to work well

m See DBI::PurePerl documentation for the small-print 117

Advanced DBI tutorial
© Tim Bunce
July 2007

Reference Materials

http://dbi.perl.org/
— The DBl Home Page

http://www.perl.com/CPAN/authors/id/TIMB/DBI_IntroTalk 2002.tar.gz
— An “Introduction to the DBI” tutorial, now rather old but still useful

http://www.perl.com/CPAN/authors/id/TIMB/DBI_WhatsNewTalk_200607.pdf
— Covers changes since “The Book” (DBI-1.14 thru DBI 1.52)

http://www.perl.com/CPAN/authors/id/TIMB/DBI_AdvancedTalk_200708.pdf
— This “Advanced DBI” tutorial (updated each year)

http://www.oreilly.com/catalog/perldbi/
— or http://www.amazon.com/exec/obidos/ASIN/1565926994/dbi
— “Programming the Perl DBI” - The DBI book, but based on DBI 1.14

http://dbi.perl.org/donate
— Donate money to the DBI Development fund via The Perl Foundation

118

The end.

Till next year ...

Meanwhile, please help me by filling out an evaluation form...

